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(57) ABSTRACT

Three-dimensional (3D) reconstruction of a cell includes
adjusting a current set of projection 1images according to a
prior1 knowledge to produce adjusted projection images, for
example, based on probability masks and/or Bayesian analy-
sis of multiple similar objects in the same sample. A recon-
struction algorithm processes the adjusted projection images
to generate a 3D 1mage. The 3D 1mage 1s further adjusted
according to the a prior1 knowledge to generate an adjusted
3D mmage. Criteria for process completion are applied to
determine whether the adjusted 3D i1mage 1s adequate.
Otherwise, a set of pseudo projections are computationally
created at the same projection angles as the current set of
projection 1mages and then compared to the current set of
projection 1mages to produce a set of new projections,
wherein the new projections are input again to the recon-
struction algorithm and the steps of the method are repeated
until the adequacy criteria are met.

22 Claims, 4 Drawing Sheets
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TOMOGRAPHIC RECONSTRUCTION OF
SMALL OBJECTS USING A PRIORI
KNOWLEDGE

FIELD OF THE INVENTION

The present invention relates to three-dimensional (3D)
imaging systems in general, and, more particularly to three-
dimensional (3D) imaging systems using a priori knowledge
about an object of interest that 1s undergoing 1mage recon-
struction using computed tomography.

BACKGROUND OF THE INVENTION

Image reconstruction algorithms 1n use today compute the
typically three-dimensional (3D) structure of an object from
its one or two-dimensional projections without using addi-
fional information about the object. Known reconstruction
algorithms 1n the tomography field, and especially the opti-
cal tomography field, are deficient 1n the use of a priori
knowledge for enhancing object reconstruction.

SUMMARY OF THE INVENTION

In one embodiment, the present invention provides a
method for three-dimensional (3D) reconstruction of an
object of interest, such as a cell, including adjusting a current
set of projection 1mages according to a priort knowledge to
produce adjusted projection 1images, for example, based on
simple probability masks or Bayesian analysis of multiple
similar objects 1n the same sample. A reconstruction algo-
rithm 1s used on the adjusted projection 1mages to generate
a 3D mmage. The 3D mmage 1s further adjusted according to
the a prior1 knowledge to generate an adjusted 3D 1mage.
Criteria for process completion are applied to determine
whether the adjusted 3D 1mage 1s adequate. Otherwise, a set
of pseudo projections are computationally created at the
same projection angles as the current set of projection
images and then compared to the current set of projection
images to produce a more realistic set of new projections,
wherein the new projections are input again to the recon-
struction algorithm and the steps of the method are repeated
until the adequacy criteria are met.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an 1llustration of an 1dealized biological cell
that may serve as a probability mask and may be improved
through Bayesian analysis of similar cells 1in the sample 1n
accordance with the teachings of the present invention.

FIG. 2 1s an 1llustration of a flow diagram showing the use
of a prior1 knowledge and iterative processing as contem-
plated by an embodiment of the present 1nvention.

FIG. 3 schematically shows an example of various forms
of statistical information that may be utilized 1n an image
reconstruction process to provide a measure of confidence
for each voxel mm a 3D image as contemplated by an
embodiment of the present invention.

FIG. 4 schematically shows a block diagram of an
example of a system for tomographic reconstruction of small
objects as contemplated by an embodiment of the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

This invention describes the advantageous use of a priori
knowledge about an object of interest that 1s undergoing,
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image reconstruction using computed tomography. In most
cases, there exists certain information about an observed
object that can be utilized in the 1mage reconstruction to
compute more accurate or more realistic 3D reconstructions.
Such a prior1 knowledge serves to constrain the reconstruc-
tion within the bounds of allowable features (i.e., what “can
be”) and unallowable features (i.e., what “cannot be”). In a
noisy image, knowing a set of unallowable features (i.c.,
what “cannot be”) can significantly improve the accuracy,
and as an additional consequence, the speed and efficiency,
of the computed 1image reconstruction. The example used to
illustrate the principals of 1mage reconstruction using a
prior1 knowledge 1s the biological cell, but those skilled 1n
the art will recognize that these principals may be applied
ogenerally to any object undergoing 1image reconstruction
where certain information concerning the shape and struc-
ture of the object 1s known.

Referring now to FIG. 1, there shown 1s an illustration of
an 1dealized biological cell. There exists certain information
in the form of knowledge about a cell 1 that 1s useful 1n a
reconstruction process as contemplated by one example of
the method of the 1nvention. For instance, biologists already
know that a typical cell 1 consists of an external bounding
membrane 2 (e.g., the cytoplasmic membrane), an internal
bounding membrane 3 (e.g., the nuclear membrane), and
these two membrane surfaces may typically be smoothly
continuous and roughly concentric. The two bounding mem-
branes define three compartments: the nuclear compartment
5 1nside the nuclear membrane, the cytoplasmic compart-
ment 4 outside the nuclear membrane but inside the cyto-
plasmic membrane and the exterior space 6 outside the
cytoplasmic membrane. The exterior space 6 has no bio-
logical structure unless 1t 1s contiguous with another cell.

Additionally, in applying one example of the method of
the invention, one may advantageously assume that the two
separate membrane surfaces are mdeed continuous and that
there 1s no useful information i1n the exterior space where
contrast values 1n that exterior space might be set to either
extreme of the contrast range depending on the nature of the
imaging system. In an optical tomography system, the
exterior space 6 may be assigned a gray value at either end
of the contrast distribution; in practice, exterior space 6 1s
substantially transparent in the image formation system.
This a prior1 knowledge 1s useful for improving the recon-
structed data set in an imperfect projection data set. The a
prior1 knowledge may typically be in the form of a prob-
ability mask that i1s applied to each projection 1image and
likewise to each subsequent pseudo projection 1mage. For
example, the probability mask may be binary as a first
simple approximation i1n the elimination of background
noise outside the cytoplasmic membrane and may be warped
to optimally fit the projection 1mage.

In operation, a tomographic 1imaging system designed to
reconstruct the 3D picture of a cell from its two-dimensional
(2D) projections may use a priori knowledge about the cell
in the computed 1mage reconstruction of that cell. One
example of such a tomographic system 1s described, for
example, 1n U.S. application Ser. No. 09/927,151 of Alan C.
Nelson, filed Aug. 10, 2001, enfitled “APPARATUS AND
METHOD FOR IMAGING SMALL OBJECTS IN A
FLOW STREAM USING OPTICAL TOMOGRAPHY,”
(hereinafter called the FOT design), incorporated herein by
this reference. In the aforesaid FOT design, cell motion 1is
accomplished 1n a flow stream, wherein cells 1n suspension
move with constant velocity along the single flow axis of a
capillary tube.

Another example of such a tomographic system 1is
described, for example, in U.S. application Ser. No. 10/126,
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026 of Alan C. Nelson, filed Apr. 19, 2002, enftitled
“VARIABLE-MOTION OPTICAL TOMOGRAPHY OF
SMALL OBIECTS,” (hereinafter called the VOT design),
incorporated herein by this reference. In the aforesaid VOT
design, cell motion 1s accomplished in a variable motion
system.

Each radial 2D projection of the cell comprises an inde-
pendent shadowgram through the cell and will contain noise.
A prior1 information about noise i1n this case typically
includes the fact that noise introduces an uncertainty 1n both
the location of a contrast element and the actual density
value of that contrast element. A prior1 information may also
include data representative of the fact that, because of noise,
certain unallowable features will be present 1n the projec-
fion. In some cases, for example, edges that should be
continuous, such as membrane edges, may appear frag-
mented and discontinuous. There may appear to be structure,
due to light scatter and diffraction, in the exterior space
where no structure should exist. Within the cell itself, there
may appear to be contrast values at either extreme of the
contrast range and as such are highly improbable, etc.
Unallowable features may be identified using many one-
dimensional (1D) and 2D image processing techniques
including masking, thresholding, histogramming, math-
ematical morphology, template matching, adaptive
processing, statistical and other methods available to those
skilled 1n the art. Therefore, 1t 1s possible to adjust the
projection 1image to better represent allowable features and
remove unallowable features before the 1mage 1s sent to a
reconstruction algorithm. Once unallowable features are
identified using a priori knowledge, the unallowable features
may be removed from the image using standard image
processing techniques.

Referring now to FIG. 2, there shown 1s an 1llustration of
a flow diagram showing the use of a prior1 knowledge and
iterative processing for generating a 3D 1mage as contem-
plated by an embodiment of the present invention. Unproc-
essed projection 1mages 8 are adjusted according to a priori
knowledge at step 9, and then input to the reconstruction
algorithm to generate the first 3D 1image at step 10. This 1n
turn 1s further adjusted by removing unallowable features
and conforming the image to allowable features according to
a prior1 knowledge at step 11. Criteria for process comple-
tion are applied to determine whether the current reconstruc-
fion 1s adequate at step 12. Criteria for process completion
may be any useful 1maging related criteria, as, for example,
a selected level of confidence values assigned to voxels or
pixels as discussed below. Otherwise, a set of pseudo
projections 1s created computationally by generating artifi-
cial projections through the 3D data volume at the same
projection angles as the current set of projection images, and
the current set of projection i1mages 1s compared to the
computed pseudo projection 1mages to produce a more
optimal set of new projections at step 14. These new
projections are adjusted again to conform with the a priori
knowledge then input again to the reconstruction algorithm
at step 9 to generate a subsequent 3D 1mage. The process
continues until the adequacy criteria are met producing a
finished 3D 1mage result at step 15.

Because the input 2D projection 1images 8 are adjusted at
step 9 according to the a prior1 knowledge before computing
the 3D reconstruction at step 10, the 3D reconstructed image
will be more realistic and more likely to represent the true
structure of the cell as compared to other reconstruction
methods. However, once the reconstruction 1s complete, the
3D image will again contain noise 1n the form of uncertainty
in contrast value and its location. As 1n the case of the 2D
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4

projection 1mages, noise can create the appearance of dis-
confinuities in surfaces that should be continuous and result
in assigned contrast values that lie outside the range of
probability. Therefore, the reconstructed 3D i1mage may
advantageously be further adjusted at step 11 to conform to
the a prior1 knowledge. These adjustments are typically
image processing techniques applied 1n 3D to assess features
such as surfaces, volumes and textures. Having adjusted the
3D mmage, pseudo 2D projections are generated at step 13 at
the same projection angles as the original actual projections
and the pairs of pseudo versus actual projection 1mages are
now compared and adjusted, then re-input to the 3D recon-
struction algorithm at step 14. Clearly, steps 9-14 comprise
an 1terative process that may be repeated through several
cycles, but 1n practice, substantial improvement will be
achieved after the second 3D reconstruction using the first
3D reconstruction to generate the first set of pseudo projec-
tions which when compared and adjusted against the origi-
nal actual projections are input to the second 3D reconstruc-
tion.

For speed and/or ease of computations a priori knowledge
applied to the 2D projection images 8 adjusted at step 9 may
comprise a first subset of all available a prior1 knowledge.
Similarly, the a prior1 knowledge applied to the 3D 1mage
may comprise a second subset of all available a priori
knowledge. The first and second subsets may comprise some
or all of the same a priori knowledge depending upon the
application.

Referring now to FIG. 3, there shown are examples of a
plurality of forms of statistical information that may advan-
tageously be utilized 1n an 1mage reconstruction process to
provide a measure of confidence for each pixel 1n a given
projection 1mage 21 and each voxel in a 3D reconstructed
image 22 as contemplated by an embodiment of the present
invention. Because populations of similar types of cells
would typically be analyzed in the optical tomography
system, Bayesian analysis 16 may be used to improve the a
prior1 knowledge based on the accumulated information in a
sample consisting of many similar cells. In addition to the a
prior1 knowledge 17, other sources of statistical variation
come from the modulation transfer function (MTF) of the
imaging system 1itself 18, the chemistry of preparing and
staining cells 19 and the propagation of errors through the
image reconstruction algorithm 20.

Referring now to FIG. 4, there shown schematically 1s a
block diagram of an example of a system for tomographic
reconstruction of small objects. The system includes a bank
of a prior1 knowledge 24, coupled by a first communication
link 25 to a computer 26. The computer 26 is, 1n turn,
coupled by a second communication link 27 to a projection
system 28. The projection system 28 receives sample objects
30 through a conventional conduit 29. In one example, the
projection system 29 may comprise Nelson’s FO'T design or
VOT design. The bank of a prior1 knowledge 24 may be
stored 1n any convenilent memory format and includes the a
prior1 knowledge discussed above with reference to FIG. 3.
The computer 26 may advantageously comprise, for
example, software programs for carrying out Bayesian
analysis 16, confidence level analysis for each pixel, conii-
dence level analysis for each voxel and 1image adjustments.
The tomographic reconstruction process using a priori
knowledge 17 readily lends itself to statistical analysis. The
a priorl knowledge may advantageously be further adjusted
through a Bayesian process 16 whereby the probability of
the a prior1 knowledge approaching truth i1s improved
through the analysis of multiple similar cells from the same
sample having been subjected to the 3D tomographic pro-
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cess. Additionally, knowledge of the 1maging system modu-
lation transfer functions 18, which may be directly measured
using conventional techniques, will set certain expectation
distributions 1n contrast values and spatial localization that

are 1ndependent of the cell.

As employed in one example embodiment of the
invention, a priort knowledge comprises, for example, the
chemistry of preparing the cell and using contrast agents 19
that will further result in certain known distributions in
contrast. And finally, the 3D 1image reconstruction algorithm
propagates and creates errors 1n a known and/or testable
manner 20. Generally, these probability distributions, except
those 1mposed by the 1mage reconstruction algorithm, will
combine multiplicatively into the projection 1mages and
provide a means to assess the confidence level of a particular
pixel 1n the context of surrounding pixels. In the end, each
pixel 1n a projection 1image, and adjustments thereto, are
assigned confidence levels with regard to the gray value,
location and context 21. Likewise, in the final 3D recon-
structed 1mage ecach voxel 1s assigned a confidence level
with regard to the gray value, location and context 22.
Image Reconstruction

The most common and easily implemented reconstruction
algorithms, known as filtered backprojection methods, are
derived from a similar paradigm in computerized X-ray
tomography (CT) using cone beam and fan beam geometry.
(See the following references, for example, Kak, A C and
Slaney, M, Principles of Computerized Tomographic
Imaging, EEE Press, New York, 1988, and Herman, G,
Image Reconstruction from Projections: The Fundamentals
of Computerized Tomography, Academic Press, New York,
1980.) These methods are based on theorems for Radon
fransforms with modifications that reflect the particular
geometry of the source/detector configuration and the ray
paths 1n the wrradiating beam. However, in the case of
clinical x-ray CT, for slice-by-slice acquisition, the human
subject 1s usually held motionless while the x-ray source and
detector arrays may move along an arc around the patient to
collect data from multiple projection angles within a given
slice. Then the human subject 1s repositioned along the
z-ax1s and another slice of data 1s collected, etc.
Alternatively, in the more modem clinical helical CT, the
patient may be continuously translated in the z-direction
while the source-detector assembly rotates continuously to
provide helical projection data, which 1s then interpolated to
provide projections orthogonal to the patient z-axis. In flow
or variable-motion optical tomography, the subject (a cell) is
moved relative to the stationary sources and detector arrays
wherein the plurality of source/detector systems acquire data
in synchrony with specific gated time points along the cell
velocity vector 1in a fashion that generates multiple projec-
fion angle data within a given slice or volume. For slice-
by-slice scanning using a fan beam geometry, the recon-
struction algorithm will compute a 2D 1mage of a plane
perpendicular to the axis of motion, and the serial stacking,
of multiple slices will generate the 3D picture of the subject
where contrast 1s a function of the variations i1n the x-ray
attenuation coelilicient or optical absorption coeflicient
within the subject for CT or optical tomography, respec-
fively. For volumetric cone beam scanning, the reconstruc-
fion algorithm computes a 3D 1mage of a volume within the
cell or other object directly from planar transmission or
emission optical projections, where the contrast 1s a function
of the optical density and/or tagged probe density
distribution, respectively, within the 1imaged object.

It may be desirable for either the transmission data to
produce the cell density reconstruction or for the emission
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data to reconstruct the labeled probe distribution, or both, to
employ 1mage reconstruction algorithms other than filtered
backprojection. The general class known as 1terative recon-
struction algorithms 1s more efficacious 1n some 1nstances,
especially for emission tomography or when it 1s possible, as
in the instance of the current invention where the axial
symmetry and tricompartmental nature of the object are
known, to 1ncorporate a priorl information into the recon-
struction algorithm to improve the quality of the reconstruc-
tion (See, for example, Gilbert, P, “Iterative Methods for the
Three-dimensional Reconstruction of an Object from
Projections,” Journal of Theoretical Biology 36:105-17,
1972, and other references noted hereinabove).

The 1invention has been described herein 1n considerable
detail mn order to comply with the Patent Statutes and to
provide those skilled 1n the art with the information needed
to apply the novel principles of the present invention, and to
construct and use such exemplary and specialized compo-
nents as are required. However, 1t 1s to be understood that the
invention may be carried out by specifically different
equipment, and devices and reconstruction algorithms, and
that various modifications, both as to the equipment details
and operating procedures, may be accomplished without
departing from the true spirit and scope of the present
invention.

What 1s claimed 1s:

1. A method for tomographic three-dimensional (3D)
reconstruction of a sample including at least one object of
interest, the method comprising the steps of:

(a) obtaining a current set of projection images from a
projection system;

(b) adjusting the current set of projection images of the
sample according to a priori knowledge to produce
adjusted projection 1images;

(c) using a reconstruction algorithm on the adjusted
projection 1images to generate a 3D 1mage;

(d) further adjusting the 3D image according to the a
prior1 knowledge to generate an adjusted 3D 1mage;

(e) applying criteria for process completion to determine
whether the adjusted 3D 1mage 1s adequate; and

(f) if the adjusted 3D image is not adequate, then com-
putationally creating a set of pseudo projections at the
same projection angles as the current set of projection
images and comparing the current set of projection
images with the pseudo projection 1mages to produce a
set of new projections, wherein the new projections are
input again at step (a) as a current set of projection
images and steps (a) through (e) are repeated until the
adequacy criteria are met.

2. The method of claim 1, wherein the at least one object

of 1nterest comprises at least one cell.

3. The method of claim 1, wherein the step of adjusting a
current set of projection 1mages 1s based on a probability
mask.

4. The method of claim 1, wherein the step of adjusting a
current set of projection 1mages 1s based on Bayesian
analysis of multiple similar objects in the sample.

5. The method of claim 1, wherein the a prior1 knowledge
includes a priori knowledge selected from the group con-
sisting of cell preparation chemistry, contrast agents having
known distributions 1n contrast, a measured modulation
transier function of the projection system and errors flowing
from a 3D i1mage reconstruction algorithm propagated and
created 1n a known manner.

6. The method of claim 5 wherein the known distributions
combine multiplicatively mto the current set of projection
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images to provide a means to assess a confidence level of a
particular pixel in the context of surrounding pixels.

7. The method of claim 1, wherein a projection 1mage
includes a plurality of pixels, the method further comprising
the step of assigning conifidence levels based on the gray
value, location and context of each pixel.

8. The method of claim 7, wherein an adjusted projection
image 1ncludes a plurality of adjusted pixels, further com-
prising the step of assigning confidence levels based on the
oray value, location and context of each adjusted pixel.

9. The method of claim 1, wherein the 3D 1mage includes
a plurality of voxels, further comprising the step of assigning
confidence levels based on the gray value, location and
context of each voxel.

10. The method of claim 9, wherein the adjusted 3D
image includes a plurality of adjusted voxels, further com-
prising the step of assigning coniidence levels based on the
oray value, location and context of each adjusted voxel.

11. A system for tomographic three-dimensional (3D)
reconstruction of an object of interest 1n a sample, compris-
Ing:

(a) a projection system for generating a current set of

projection 1mages from the sample;

(b) means, coupled to receive the current set of projection
images, for adjusting the current set of projection
images of the sample according to a prior1 knowledge
to produce adjusted projection 1images;

(¢) means, coupled to receive the adjusted projection
images, for using a reconstruction algorithm on the
adjusted projection 1mages to generate a 3D 1mage;

(d) means, coupled to receive the 3D image, for further
adjusting the 3D 1mage according to the a priori knowl-
cdge to generate an adjusted 3D 1mage;

(e) means, coupled to receive the adjusted 3D image, for
applying criteria for process completion to determine
whether the adjusted 3D 1mage 1s adequate; and

() means, coupled to receive the adjusted 3D 1image if not
adequate, for otherwise computationally creating a set
of pseudo projections at the same projection angles as
the current set of projection 1mages and comparing the
current set of projection images with the pseudo pro-
jection 1mages to generate a set ol new projections,
wherein the new projections are input again to the
means for adjusting a current set of projection 1mages
as a current set of projection 1images.

12. The system of claim 11, wherein the object of 1nterest

1s a cell.

13. The system of claim 11, wherein the means for
adjusting a current set of projection 1mages 1s based on a
probability mask.

14. The system of claim 11, wherein the means for
adjusting a current set of projection 1mages 1s based on
Bayesian analysis of multiple similar objects in the same
sample.

15. The system of claim 11, wherein the a prior1 knowl-
edge including a prior1 knowledge selected from the group
consisting of cell preparation chemistry knowledge, knowl-
cdge of contrast agents having known distributions in
contrast, a measured modulation transfer function of the
projection system and knowledge of errors flowing from a

3

3D mmage reconstruction algorithm propagated and created
in a known manner.

16. The system of claim 15 wherein the known distribu-
fions combine multiplicatively into the current set of pro-

s jection 1mages to provide a means to assess the confidence
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level of a particular pixel in the context of surrounding
pixels.

17. The system of claim 11, wherein each projection
image 1ncludes a plurality of pixels, the system further
comprising means for assigning confidence levels based on
oray value, location and context of each pixel.

18. The system of claim 17, wherein each adjusted
projection 1mage includes a plurality of adjusted pixels, the
system further comprising means for assigning confidence
levels based on gray value, location and context of each
adjusted pixel.

19. The system of claim 17, wherein the 3D 1mage
includes a plurality of voxels, the system further comprising
means for assigning confidence levels based on gray value,
location and context of each voxel.

20. The system of claim 19, wherein the 3D image
includes a plurality of adjusted voxels, further comprising
means for assigning confidence levels based on the gray
value, location and context of each adjusted voxel 1mn a
projection 1mage.

21. A method for tomographic three-dimensional (3D)
reconstruction from a set of projection 1mages from a sample
processed 1n a projection system including at least one cell,
comprising the steps of:

(a) adjusting a current set of projection images of the
sample according to a first set of a prior1 knowledge to
produce adjusted projection images, based on Bayesian
analysis of multiple similar objects 1n the sample;

(b) using a reconstruction algorithm on the adjusted
projection 1mages to generate a 3D 1mage based on
Bayesian analysis of multiple similar objects 1n the
sample;

(c) further adjusting the 3D image according to a second
set of a priori knowledge to generate an adjusted 3D
image based on Bayesian analysis of multiple similar
objects 1n the sample;

(d) applying criteria for process completion to determine
whether the adjusted 3D 1mage 1s adequate; and

(e) if the adjusted 3D image is not adequate, then com-
putationally creating a set of pseudo projections at the
same projection angles as the current set of projection
images and comparing the current set of projection
images with the pseudo projection 1mages to produce a
set of new projections, wherein the new projections are
input again to the reconstruction algorithm at step (a) as
a current set of projection images and steps (a) through
(e) are repeated until the adequacy criteria are met.

22. The method of claim 21, wherein the second set of a

prior1 knowledge mncludes a prior1 knowledge selected from
the group consisting of cell preparation chemistry, contrast
agents having known distributions in contrast, a measured
modulation transfer function of the projection system and
errors flowing from a 3D 1mage reconstruction algorithm
propagated and created 1 a known manner.
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