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SYSTEM AND METHOD FOR DETECTING
POOR QUALITY IN 3D RECONSTRUCTIONS

FIELD OF THE INVENTION

The present invention relates generally to analysis of medi-
cal imaging data, and, more particularly, to detecting poor
quality in three-dimensional (3D) reconstructions 1n a bio-
logical cell imager.

BACKGROUND OF THE INVENTION

3D tomographic reconstructions require projection images
as input. A projection image assumes that an object of interest
1s translucent to a source of exposure such as a light source
transmitted through the object of interest. The projection
image, then, comprises an integration of the absorption by the
object along a ray from the source to the plane of projection.
Light in the visible spectrum 1s used as a source of exposure
in optical projection tomography.

In the case of producing projections from biological cells,
the cells are typically stained with hematoxylin, an absorptive
stain that attaches to proteins found 1n cell chromosomes. Cell
nucle1 are approximately 15 microns in diameter, and 1n order
to promote reconstructions of sub-cellular features it 1s nec-
essary to maintain sub-micron resolution. For sub-micron
resolution, the wavelength of the 1lluminating source 1s 1n the
same spatial range as the biological objects of interest. This
can result in undesirable refraction effects. As a result a stan-
dard projection image cannot be formed. To avoid these unde-
sirable effects, as noted above, the camera aperture 1s kept
open while the plane of focus 1s swept through the cell. This
approach to imaging results in equal sampling of the entire
cellular volume, resulting 1n a pseudo-projection image. A
good example of an optical tomography system has been
published as United States Patent Application Publication
2004-0076319, on Apr. 22, 2004, corresponding to U.S. Pat.
No. 7,738,945 1ssued Jun. 15, 2010, to Fauver, et al. and
entitled “Method and Apparatus for Pseudo-Projection For-
mation for Optical Tomography.” U.S. Pat. No. 7,738,945 1s
incorporated herein by reference.

An optical tomography system may advantageously
employ scores for classitying objects of interest, for example,
to detect lung cancer 1n its pre-invasive and treatable stage. In
order to do so with accuracy and reliability, the classification
scores must be based on good quality 3D reconstruction
images of the objects being classified. One example of an
optical tomography system 1s being built by VisionGate, Inc.
of Gig Harbor Wash., assignee of this application, 1s under the
trademark “Cell-CT™.” In one aspect, the Cell-C'T™ optical
tomography system employs scores, designed to provide an
indication of lung cancer 1n 1ts pre-invasive and treatable
stage.

While 1t 1s generally understood that poor quality 3D
reconstructions may adversely affect classification results in
optical tomography systems, an automated system for detect-
ing such poor quality 3D reconstructions has been lacking
until now. The system and method disclosed herein provides,
for the first time, a solution for detection of poor quality 3D
reconstructions usetul for an optical tomography system, for
example.

SUMMARY

This summary 1s provided to introduce a selection of con-
cepts 1n a simplified form that are further described below 1n
the Detailed Description. This summary 1s not mtended to
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2

identily key features of the claimed subject matter, nor 1s 1t
intended to be used as an aid 1n determining the scope of the
claimed subject matter.

A system and method for detecting poor quality images 1n
an optical tomography system 1s presented. The system
includes an acquisition means for acquiring a set of projection
images of an object having a center of mass, where each of the
set of projection 1images 1s acquired at a different angle of
view. A reconstruction means 1s coupled to receive the pro-
jection 1mages, for reconstruction of the projection 1mages
into 3D reconstruction images. A quality means for classifi-
cation of the 3D reconstruction images uses selected features
that characterize poor quality reconstructions.

BRIEF DESCRIPTION OF THE DRAWINGS

While the novel features of the invention are set forth with
particularity 1n the appended claims, the mnvention, both as to
organization and content, will be better understood and
appreciated, along with other objects and features thereof,
from the following detailed description taken 1n conjunction
with the drawings, 1n which:

FIG. 1 shows a highly schematic view of an optical pro-
jection tomography system including a quality score classi-
fier.

FIG. 2A and FIG. 2B show slices from reconstructions
where pseudo-projections are i good focus and poor focus
respectively.

FIG. 3A and FIG. 3B show slices from reconstructions
where pseudo-projections are 1 good alignment and poor
alignment respectively.

FIG. 4 shows a slice from a reconstructed cell where the
cell boundary and corresponding segmentation boundary are
shown.

FIG. 5A and FIG. 5B show slices from reconstructions
where pseudo-projections are 1n good alignment and poor
alignment respectively.

FIG. 6 A and FIG. 6B show a fixed focal plane slice and a
reconstruction slice for a good quality reconstruction.

FIG. 7A and FIG. 7B show a fixed focal plane slice and a
reconstruction slice for a poor quality reconstruction.

FIG. 8 A shows a comparison of center of mass trend with
a curve 1t using a cosine function for a good quality recon-
struction.

FIG. 8B shows a comparison of center of mass trend with
a curve it using a cosine function for a poor quality recon-
struction.

FIG. 9 shows quality classifier ROC curve where sensitiv-
ity measures the detection accuracy for poor reconstructions.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The following disclosure describes several embodiments
and systems for imaging an object of interest. Several features
of methods and systems 1n accordance with example embodi-
ments ol the mvention are set forth and described 1n the
figures. It will be appreciated that methods and systems 1n
accordance with other example embodiments of the invention
can include additional procedures or features different than
those shown 1n figures.

Example embodiments are described herein with respect to
biological cells. However, it will be understood that these
examples are for the purpose of illustrating the principles of
the invention, and that the invention 1s not so limited. Addi-
tionally, methods and systems in accordance with several
example embodiments of the invention may not include all of
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the features shown 1n these figures. Throughout the figures,
like reference numbers refer to similar or 1dentical compo-
nents or procedures.

Unless the context requires otherwise, throughout the
specification and claims which follow, the word “comprise”
and variations thereof, such as, “comprises” and “compris-
ing”” are to be construed 1n an open, inclusive sense that 1s as
“including, but not limited to.”

Reference throughout this specification to “one example”™
or “an example embodiment,” “one embodiment,” “an
embodiment” or various combinations of these terms means
that a particular feature, structure or characteristic described
in connection with the embodiment 1s included 1n at least one
embodiment of the present disclosure. Thus, the appearances
ol the phrases “in one embodiment™ or “1n an embodiment™ 1n
various places throughout this specification are not necessar-
ily all referring to the same embodiment. Furthermore, the
particular features, structures, or characteristics may be com-
bined 1n any suitable manner 1n one or more embodiments.

Generally as used herein the following terms have the
tollowing meanings when used within the context of optical
tomography processes:

“Capillary tube” has its generally accepted meaning and 1s
intended to include transparent microcapillary tubes and
equivalent items with an inside diameter generally of
500 microns or less.

“Depth of field” 1s the length along the optical axis within
which the focal plane may be shifted before an unac-
ceptable image blur for a specified feature 1s produced.

“Object” means an 1ndividual cell, item, thing, particle or
other microscopic entity.

“Pseudo-projection” or “‘pseudo-projection 1mage”
includes a single image representing a sampled volume
of extent larger than the native depth of field of a given
set of optics. One concept ol a pseudo-projection 1s
taught 1n Fauver *744.

“Specimen” means a complete product obtained from a
single test or procedure from an individual patient (e.g.,
sputum submitted for analysis, a biopsy, or a nasal
swab). A specimen may be composed of one or more
objects. The result of the specimen diagnosis becomes
part of the case diagnosis.

“Sample” means a finished cellular preparation that 1s
ready for analysis, including all or part of an aliquot or
specimen.

As used 1n this specification, the terms “processor” and
“computer processor’ encompass a personal computer, a
microcontroller, a microprocessor, a field programmable
object array (FPOA), a digital signal processor (DSP), an
application-specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a programmable logic array
(PLA), or any other digital processing engine, device or
equivalent 1including related memory devices, transmission
devices, pointing devices, input/output devices, displays and
equivalents.

Referring now to FIG. 1 a highly schematic view of an
optical projection tomography system including a quality
score classifier 1s shown. Cells 13 are suspended 1n an index
of refraction matching gel 12 contained 1n a capillary tube 18.
Pressure 10 1s applied to the gel 12 to move the cells into the
optical path of a high-magnification microscope including an
objective lens 3. The objective lens 5 1s scanned or vibrated
by, for example, a (not shown) piezo-electric element. The
capillary tube 18 1s positioned to be scanned by the vibrating
objective lens 5. An i1llumination source 20 operates to 1llu-
minate objects, such as biological cells passing through the
field of view of the objective lens 5. An 1mage sensor 25 1s
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4

located to acquire 1mages transmitted from the objective lens
5. A plurality of pseudo-projection images, here exemplified
by pseudo-projection images 22A, 22B and 22C are acquired
by the image sensor 25 at varying angles of view as presented
by the rotating capillary tube 18. The plurality of pseudo-
projection images are then passed to a reconstruction proces-
sor 35 for producing 3D 1images. A quality score classifier 36
1s coupled to the reconstruction processor 33 to recerve the
reconstructed 3D 1mages. The quality score classifier, in one
embodiment, then classifies the recetved 1mages as accept-
able or of poor quality and not acceptable for further analysis.

In the example, the plurality of pseudo-projection images,

here exemplified by pseudo-projection images 22A, 22B and
22C are shown acquired at angles of 0°, 90° and 180° respec-
tively. It will be understood that these are merely examples
and that the number of pseudo-projection 1mages actually
acquired will typically be several hundred images. The recon-
struction processor 35 may be of the type as described 1n
Fauver et al. referenced hereinabove. The quality score clas-
sifier may, for example, advantageously assign numerical
scores to the reconstructed 3D images where the numerical
scores have values scaled to represent degrees of quality of
the images. In other embodiments the quality score classifier
may simply sort poor quality images from other images.

Having described the major components of an optical

tomography system including a quality score classifier, it 1s
now considered useful to an understanding of the invention to
describe an example embodiment of operation of such a sys-
tem. Taken 1n a substantially chronological order, an example
of operation may include the following functions.

1. A specimen for examination 1s processed to remove
non-diagnostic elements and 1s fixed and stained.

2. The specimen 1s then suspended 1n a gel medium. The
cells 1n gel mixture are then 1nserted 1nto a glass micro-
capillary tube 18 of approximately 50u mner diameter
16.

3. Pressure 1s applied to the gel to move the cells into the
optical path 14 of a high-magnification microscope.

4. Once the cells are 1n place the tube 1s rotated to permit
capture of 500 high resolution images of the desired
object taken over 360 degrees of tube rotation. These
images are simulations of projection 1images created by
integrating the light from the objective lens as the objec-
tive scans the nucleus. The simulated projection or
pseudo-projection i1mages thus represent the entire
nuclear content 1n a single 1mage, taken from a single
perspective.

5. Pseudo-projection images are processed to correct for
residual noise and motion artifacts.

6. The corrected pseudo projections are processed using
filtered back projection to yield a 3D tomographic rep-
resentation of the cell.

7. Based on the tomographic reconstruction, features are
computed that are used, for example, to detect cells with
characteristics of indicative of cancer and 1ts precursors.
These features may be used 1n a classifier whose output
designates the likelihood that object under investigation
belongs 1n a specified class, such as a cancer cell.

Among other things, good quality classification depends

on good quality 3D reconstructions in step 6. Issues govern-
ing quality arise from detrimental effects that may be intro-
duced by the operation of a given optical tomography system
and characteristics relating to deficient correction of random
cell motion occurring during 1mage capture. If cells are not
properly in focus in the set of pseudo-projections or 11 the cell
moves oil the camera frame during capture, the resulting
reconstruction will not be i1deal. In a likewise fashion, i1t
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proper corrections for the random motions arising during
image capture are not made, then the various features of the
cell will not reinforce each other 1n the reconstruction, thus
compromising reconstruction quality.

Poor quality images may result in distorted reconstructions
entering the classification stream, producing unpredictable
results retlected in 1ncorrect or distorted classification scor-
ing. Therefore, poor quality reconstructions need to be
detected to ensure the integrity of classification. A method for
detecting poor quality reconstructions in cases where, for
example, pseudo-projection images were not collected 1n an
ideal way, when registration was not successiul, or for other
reasons atlecting image quality, 1s described 1n detail herein
suificient for one skilled in the art to make and use the inven-
tion.

As described further herein, detection of poor quality
reconstructions may be carried out by various methods
including poor quality detection based on features describing
streaking 1n reconstruction, poor quality detection based on a
comparison between fixed focal plane and reconstructed
slice, poor quality detection using parameters of cosine fitting
to center of mass trends and the like. It has been observed that
streaking may have various causes. Image quality 1ssues due
to poor focus and random motions affecting cell alignment
have similar streaking effects on reconstructions.

Referring now to FIG. 2A and FIG. 2B, slices from recon-
structions where pseudo-projections are 1 good focus and
poor focus respectively are shown. Now addressing effects of
poor focus, 1t has been observed as shown 1n FIG. 2B, that
occasionally, cells are not well focused across a sub-set of the
pseudo-projections. In poorly focused pseudo-projections,
morphology is usually blurred, producing blurred image fea-
tures such as lobe 202. When back-projected, such blurred
image features do not ideally align with the same features
found 1 well-focused pseudo-projections from the same set.
This lack of alignment creates a streaking effect in the recon-
struction.

Referring now to FIG. 3A and FIG. 3B, slices from recon-
structions where pseudo-projections are i good alignment
and poor alignment respectively are shown. Poor alignment
due to random motions of the cell occurring during 1image
capture must be corrected for post-acquisition in software.
One such system 1s described in US Patent Publication No.
20080285827, published Nov. 20, 2008, for U.S. Pat. No.
7,835,561 1ssued Nov. 16, 2010 to Meyer et al. entitled,
“Method For Image Processing And Reconstruction Of
Images For Optical Tomography,” which 1s incorporated
herein by reference.

In some circumstances, the correction algorithm does not
converge to an appropriate solution and poor alignment is
observed 1n the acquired set of corrected pseudo-projections
that are used as input to the filtered-backprojection algorithm.
As a result, cell morphology does not reinforce 1n the back-
projection. The effect of poor alignment 1s similar to that of
poor focus. Lack of good quality alignment produces streak-
ing 1n the reconstruction. FIG. 3A shows a slice from a recon-
struction from a well focused and well aligned cell. Note the
crisp boundary 302 describing the cell and nucleus. FIG. 3B
shows a slice from a reconstruction created where a sub-set of
the pseudo-projections were well focused but poorly aligned
with the other pseudo-projections. Note that cell and nuclear
boundaries are not crisp and that a streak artifact 1s observed
in the background of the reconstruction.

Comparing FI1G. 2B and FIG. 3B, 1t can be observed that
poor focus and poor registration produce similar effects on
the reconstruction. These eflects may be recognized in order
to detect a poor quality reconstruction by characterizing the
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6

voxels 1n the reconstruction that are not associated with the
cell. Performing the recognition based on the background
allows for an algorithm that 1s not as strongly influenced by
the diverse biology that one observes from cell to cell. The
process begins with a segmentation algorithm to separate the
cell from the background.

For some applications, segmentation development may be
initiated with annotations of reconstructions made by hand
drawn cell boundaries. These boundaries serve as a reference
to guide development. The resulting segmentation algorithm
includes 1dentification of a threshold, selected for the particu-
lar cell under examination. In one example, threshold selec-
tion follows a procedure wherein a cell segmentation program
first selects fifteen slices near the center of the reconstruction.
With each slice a range of thresholds 1s applied and an area
derivative and a second dermvative 1s computed for each. To
select a threshold for each slice, a negative second derivative
1s located at a threshold higher than the maximum area deriva-
tive. A global threshold 1s chosen using a percentile of the
selected slice thresholds. Finally, the largest object 1s kept,
and any holes 1 1t are filled using digital techniques.

Referring now to FIG. 4, a slice from a reconstructed cell
where the cell boundary and corresponding segmentation
boundary are shown. Using the segmentation techniques
described herein a computed segmentation mask was devel-
oped to correspond to this boundary. The resulting segmen-
tation algorithm produced the boundary 402. The segmenta-
tion mask was applied to the reconstruction by setting all
voxel values 1n the reconstruction that are also within the
segmentation mask to a value of 255. Those skilled 1n the art
will recognize that voxel and pixel light intensity values for
reconstructions and 1image slices typically vary in brightness
on a scale from 0 to 255, but that other scales may also be
employed without departing from the scope and spirit of the
invention.

Referring now to FIG. 5A and FIG. 3B, slices from recon-
structions where pseudo-projections are i good alignment
and poor alignment respectively are shown. The pseudo pro-
jections mnclude a cell 100, where the cell has been segmented
and the background voxels have been amplified to fill the grey
scalerange. F1G. 5A and FIG. 3B respectively show the result
of further processing of the images of FIG. 3A and FIG. 3B
after a mask has been applied and the background has been
equalized so that the histogram for the background extends
across the available grey scale range. Note the prominent
streak artifact 102 for the image associated with poor regis-
tration. The streak artifact 102 may be characterized by com-
puting a set of features on those voxels 1n the reconstruction
that are associated with the background of the reconstruction.
Table 1 provides a list of features that may advantageously be
employed for characterizing the streak effect.

TABLE ]

Feature

Type Description

Histogram As seen in FIG. 5A and FIG. 5B, there is a greater variance 1n
background voxels for the poorly aligned cell 102 versus the
well aligned cell 100. Therefore, features that characterize
various statistics on background voxels may be employed for
detection of poor quality of reconstructions. Such statistics may
advantageously include: mode, mean, median, variance,
coellicient of variance, skewness, kurtosis, various percentiles
of the histogram - 10th, 40th percentile, etc.

Spatial As seen by comparing FIG. 5A and FIG. 5B, the images exhibit

Frequency a different pattern in the spatial frequencies of the two different

reconstructed slices. Therefore, procedures whose values
characterize the spatial frequencies of the reconstructed slices
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TABLE I-continued
Feature
Type Description
may be employed for detection of poor quality of
reconstructions. Useful procedures may advantageously
include Fourier transforms, FFT, wavelet transform, etc.
Texture Texture Features characterize the distribution of grey scale

values 1n the background. Texture methods are based on
mathematical morphology. Two methods may be especially
important for quality detection. First, run length features
characterize the length of a gray scale run. These are typically
represented in a histogram. Run-length features are statistical
moments computed on the run-length histogram, such as
mean, variance, mode, etc., Second, blur residue features
characterize texture by computing a difference image using
morphological opening or closing on the background and
subtracting it from the original, masked image. Statistically-
based features may be then computed on the background
voxels in the difference image for different choices of structure
element used for opening and/or closing.

Another technique for assessing reconstruction quality 1s
to compare reconstruction slices with their corresponding,
fixed focal plane slices. So long as they are well focused, fixed
tocal plane slices should be free of whatever distortions were
introduced into the reconstruction during image capture or
processing. Therefore, these 1mages form an excellent refer-
ence to judge reconstruction quality. Referring now to FIG.
6A and FIG. 6B, fixed focal plane and reconstruction slices
tor a good quality reconstruction are shown respectively. FIG.
6 A shows a fixed focal plane 1mage and FIG. 6B shows a slice
from the reconstruction that best matches i1t from a good
quality reconstruction. Similarly, FIG. 7A shows a fixed focal
plane image and FIG. 7B shows a slice from the reconstruc-
tion that best matches it from a poor quality reconstruction.

Features derived to judge good quality of reconstruction
are formed by creating a difference image between the fixed
focus and reconstruction slice 1images. In contrast with the
above features of Table 1, difference image features are com-
puted for those voxels that are associated with the cell. Low
average difference for the portion of the images containing
the cell reflects good quality of reconstruction.

Another useful method for detection of poor quality
images employs parameters of cosine fitting to center of mass
trends. As indicated by FIG. 1, data collection on an optical
tomography system proceeds by moving objects, for
example, cells, into position under the objective lens and
spinning the capillary tube to collect the set of pseudo-pro-
jections. When viewed from a specific perspective the center
of mass of the cell moves up and down 1n a cosine pattern
when plotted against capillary angle of rotation. Poor regis-
tration occurs when the grey-scale mass 1s not conserved
across all pseudo-projections. When this occurs, the trend 1n
the center of mass often deviates from a cosine. Detection of
poor quality reconstruction may therefore be potentially
accomplished by fitting the trend in center of mass with a
cosine function and characterizing the error of the fit. Specific
features used for detection include the absolute and radius
normalized maximum deviation, and root mean square error
(RMSE) between center of mass cosine {it and trend.

Referring now to FIG. 8 A, an example of a comparison of
center of mass trend 802 with fit using a cosine 804 for a good
quality reconstruction 1s shown. FIG. 8B shows an example of
a comparison of center of mass trend 806 with fit using a
cosine 808 for a poor quality reconstruction. In both graphs
the horizontal axes represent the pseudo-projection number.
The vertical axes represent the center of mass position 1n
microns. Note the negligible deviation between fit 802 with
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trend 804 for the good reconstruction to the point that the
curves essentially coincide, and the more substantial fit-trend
deviation between lines 806 and 808 for the poor reconstruc-
tion.

With respect to the example of F1G. 8 A the following curve
{1t statistics apply:

Fit error mean=0.102 um,

Fit error standard deviation=0.071 um,

Fit error maximum (absolute)=0.28 um,

Fit error maximum delta=0.08 um,

Radius to object center=19.797 um,
X offset=-0.222 um,

Phase=0.114 degrees,

Relative Deviation 1n frequency=0.147%, and

Linear drift 1n X=0 um.

With respect to the example of FIG. 8B the following curve
{1t statistics apply:

Fit error mean=1.051 um,

Fit error standard deviation=0.7356 um,

Fit error maximum (absolute)=2.335 um,

Fit error maximum delta=4.541 um,

Radius to object center=8.993 um,
X offset=—0.14 um,

Phase=-19.033 degrees,

Relative deviation 1n frequency=0.356%, and

Linear drift in X=0.005 um.

Note that the error statistics, such as the fit error mean, for the
poor quality reconstruction are an order of magnitude larger
than the error statistics for a good quality reconstruction.

Referring now to FIG. 9, a quality classifier ROC curve 1s
shown. Using the above described features and expert 1den-
tification of poor reconstruction quality, a classifier was cre-
ated whose output optimally corresponds to the expert 1den-
tification. This correspondence may be summarized using a
receiver operator characteristic (ROC) curve. Sensitivity 1s
represented on the vertical axis ranging from 0.0 to 1.0. Here
sensitivity measures the detection accuracy for poor recon-
structions. Specificity 1s represented on the horizontal axis
also ranging from 0.0 to 1.0. Those skilled 1n the art having
the tull benefit of this disclosure will understand how to build
a quality scoring classifier using the selected features 1denti-
fied hereinabove.

While specific embodiments of the invention have been
illustrated and described herein, 1t 1s realized that numerous
modifications and changes will occur to those skilled 1n the
art. It 1s therefore to be understood that the appended claims
are 1mtended to cover all such modifications and changes as
tall within the true spirit and scope of the invention.

What 1s claimed 1s:

1. A system for detecting poor quality images in an optical
tomography system comprising:

acquisition means for acquiring a set of pseudo-projection

images of an object having a center of mass, where each
of the set of pseudo-projection 1mages 1s acquired at a
different angle of view;

reconstruction means, coupled to recerve the pseudo-pro-

jection 1mages, for reconstruction of the pseudo-projec-
tion 1mages nto 3D reconstruction images; and
quality means for classification of the 3D reconstruction
images using selected features that characterize poor
quality reconstructions wherein the set of pseudo-pro-
jection 1mages present a center of mass trend for the
object and the selected features are calculated from a
comparison of the center of mass trend with a cosine
function fitting the trend 1n the center of mass.

2. The system of claim 1 wherein the selected features

describe streaking 1n the 3D reconstruction images.
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3. The system of claim 1 wherein the selected features
include difference image features that are formed by creating
a difference 1mage between a fixed focus 1image and a recon-

struction slice 1mage.

4. The system of claam 3 wherein the difference image
teatures are computed for those voxels that are associated
with the cell including an average diflerence for the portion of
the 1mages containing the cell.

5. The system of claim 1 wherein the calculation of the
selected features includes measuring an error between the
cosine function and the center of mass trend.

6. The system of claim 5 wherein the selected features
include the absolute and radius normalized maximum devia-
tion, and root mean square error (RMSE) between the cosine
function and the center of mass trend.

7. The system of claim 1 wherein the selected features are
selected from the group consisting of histogram statistics,
texture features and spatial frequency features.

8. The system of claim 1 wherein the object comprises a
biological cell.

9. A method for detecting poor quality images 1n an optical
tomography system comprising:

operating the optical tomography system to acquire a set of

pseudo-projection images of an object having a center of
mass, where each of the set of pseudo-projection images
1s acquired at a different angle of view;

transmitting the set of pseudo-projection 1images to a pro-

cessor for reconstructing the pseudo-projection images
into 3D reconstruction 1mages; and

operating the processor to classity the 3D reconstruction

images using selected features that characterize poor
quality reconstructions wherein the selected features
include difference image features that are formed by
creating a difference 1mage between a fixed focus 1mage
and a reconstruction slice 1image.

10. The method of claim 9 wherein the selected features
describe streaking 1n the 3D reconstruction images.

11. The method of claim 9 wherein the difference image
teatures are computed for those voxels that are associated
with the cell including an average diflerence for the portion of
the 1mages containing the cell.

12. The method of claim 9 wherein the set of pseudo-
projection images present a center ol mass trend for the object
and the selected features are calculated from a comparison of
the center of mass trend with a cosine function fitting the trend
in the center of mass.

13. The method of claim 12 wherein the calculation of the
selected features includes measuring an error between the
cosine function and the center of mass trend.

14. The method of claim 13 wherein the selected features
include the absolute and radius normalized maximum devia-
tion, and root mean square error (RMSE) between the cosine
function and the center of mass trend.
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15. The method of claim 9 wherein the selected features are
selected from the group consisting of histogram statistics,
texture features and spatial frequency features.

16. The method of claim 9 wherein the object comprises a
biological cell.

17. A system for detecting poor quality images 1n an optical
tomography system where a set of cells are suspended 1n an
index of refraction matching gel contained 1n a rotating cap-
illary tube, where pressure 1s applied to the gel to move the
cells into the optical path of a microscope including an objec-
tive lens that 1s scanned through the capillary tube while an
illumination source operates to illuminate cells passing
through the field of view of the objective lens and where the
optical tomography system includes an image sensor located
to acquire pseudo-projection 1mages transmitted from the
objective lens, where each of the set of pseudo-projection
images 1s acquired at a different angle of view, the system
comprising;

a reconstruction processor, coupled to recerve a set of
pseudo-projection images ol each of the set of cells, each
cell having a center of mass, where the reconstruction
processor creates at least one 3D reconstruction 1mage;

a quality score classifier coupled to recerve the at least one
3D reconstruction 1mage, where the quality score clas-
sifier scores selected features in the at least one 3D
reconstruction image;

wherein the selected features describe streaking 1n recon-
struction;

wherein the set of pseudo-projection images present a cen-
ter of mass trend for the cell and the selected features
further include comparison features calculated from a
comparison of the center of mass trend with a cosine it
curve;

wherein the selected features include difference 1image fea-
tures that are formed by creating a difference image
between a fixed focus 1mage and a reconstruction slice
images; and

wherein the difference image features are computed for
voxels that are associated with the cell including an
average difference for the portion of the images contain-
ing the cell.

18. The system of claim 17 wherein the calculation of the
selected features includes selected features includes measur-
ing an error between the cosine function and the center of
mass trend.

19. The system of claim 18 wherein the selected features
include the absolute and radius normalized maximum devia-
tion, and root mean square error (RMSE) between the cosine
function and the center of mass trend.

20. The system of claim 17 wherein the selected features
are selected from the group consisting of histogram statistics,
texture features and spatial frequency features.
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