Malignancy Associated Change and The LuCED[®] Test for Detection of Early Stage Lung Cancer

Background

Sputum Prep: Dissolves mucous, stains chromatin, enriches for bronchial epithelial cells **Cell-CT® Platform Processing:** Automatically analyzes cells in true 3D with isometric, sub-micron resolution

Bronchial	Normal	Moderate	Squamous
Epithelial	Metaplastic	Dysplasia	Cancer
		5	hicrons

Motivation:

Early detection remains by far the most reliable and potent strategy in curing lung cancer. Many current approaches, however, are limited by poor sensitivity or specificity that increase health care costs and potentially risk patient health through unneeded and invasive procedures. The Cell-CT[™] platform and LuCED[®] test represent a promising new method for detecting lung cancer with high (92%) sensitivity and (95%) specificity that is based on alterations in cellular morphology.

The association between cell morphology and cancer has been established in the cytology literature.

However, the tumor field effect potentially introduces subtle changes into non-tumor cells that reside in the tumor microenvironment. This phenomenon has given rise to the malignancy associated change (MAC) hypothesis.

We present a study of 3D morphological alterations in non-tumor cells obtained from sputum of healthy subjects and biopsy confirmed lung cancer patients.

Study Materials:

Hierarchical Clustering Analysis:

- and cancer samples
- patients

Classifier Development:

- Nuclear, cell and cytoplasm segmentation
- Texture chromatin arrangement, distribution within nucleus
- Nuclear/Cytoplasm volume ratio
- Nuclear Grooves
- Ground truth defined by the biopsy status and dissimilar clusters
- Adaptively boosted logistic regression
- Three separate classifiers for each of the above cell types

2018 WCLC – Poster #14044: M. Meyer, L. Kelbauskas, R. Katdare, C. Presley, C. Hamilton, D. Sussman, T. Bell, A. Nelson

Methods

• Non-invasive sputum specimens from 235 patients with and without biopsy confirmed lung cancer were processed using the Cell-CT[™] platform

• 3D cell images from these patients were examined to find squamous intermediate, macrophages and bronchial epithelial columnar cells that were within the normal range by cytology:

Cell Type	Number of cells from cancer patients	Number
amous Intermediate	2316	
Macrophages	4960	
Columnar cells	3227	

• Heatmap of 3D morphological features of macrophage cells

• The first 200 features with most discriminatory power between normal and cancer cases are shown • Features were selected based on statistical significance (p-value) of differentiation between normal

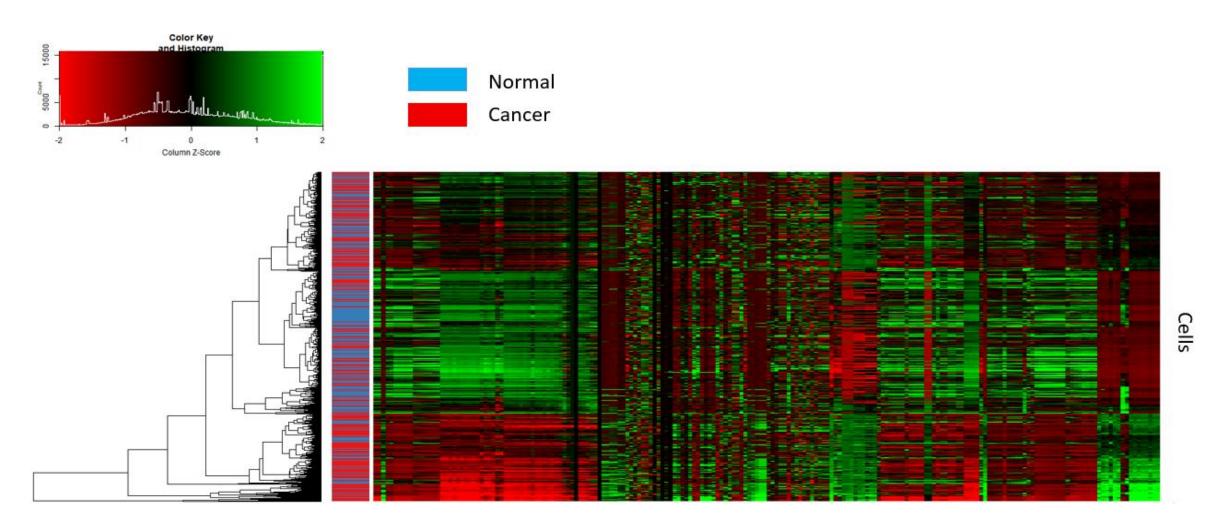
• Clustering highlights 'dissimilar cells' (macrophages) obtained from normal subjects and cancer

• Over 700 morphometric biosignatures for each 3D cell image:

Results and Conclusions

per of cells from rmal patients 684

5040 3234


Results:

Cell Classifiers

Squamous Intermediate

Macrophages

Columnar

Heatmap analysis indicates distinct features distribution patterns of macrophage cells correlated with normal vs. malignant diagnosis. **Conclusions:**

Our results suggest that the Cell-CT platform can discriminate cell features that are too subtle to distinguish by a human. The study suggests that detection of cells with Malignancy Associated Changes may be used to further enhance the LuCED test's performance beyond published levels.

Cell-CT[™] 3D cellular imaging shows promise as a means of identifying patient lung cancer based on malignancy associated change, without the need to detect actual cancer cells

Area Under ROC
0.94
0.94
0.92

